
International Journal of Scientific & Engineering Research, Volume 4, Issue 5, May-2013 183
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

Fpga Chip Identificaton Generator Using Digital Clock
Manager

S.Rexlin Leveena*

*(M.E – VLSI Design, Srinivasan Engineering College, Perambalur,
Email: rexlins188@gmail.com)

ABSTRACT

Physically Unclonable Functions (PUF) are commonly used in applications such as hardware security and property
protection. Various PUF implementation techniques are used to translate the chip-specific variations into a unique
binary string. It is difficult to maintain the repeatability of FPGA chip ID generation, especially used over a wide
range of operating conditions. To overcome this problem, configurable ring oscillator, orthogonal re-initialization
scheme to improve repeatability. We propose a Digital Clock Manager (DCM). It is used to generate the digital
clock signals.
Keywords - Field-Programmable Gate Array (FPGA), physically unclonable functions, digital clock manager,
configurable ring oscillator.

I. INTRODUCTION

Field-Programmable Gate Arrays (FPGAs) are a
mainstream of hardware implementation platform, and
need to be equipped with chip identification capabilities.
Today’s FPGAs already contain such features. For
example, in Xilinx Vertex devices, a bit-stream can be
encrypted using a secret key.
When the bit-stream is downloaded, a hardware
decryption core decrypts the bit-stream. The bit-stream
only operates correctly if the device was programmed
with the same key. This key is stored in RAM and it is not
possible to read back the value [1]. Unfortunately, the
chip Identifier (ID) used for bit-stream decoding is not
available for other applications since this value cannot be
read.
Xilinx also provides “Device DNA” in Spartan-3A series
FPGAs to protect designs from cloning, unauthorized
overbuilding and reverse engineering. This feature is a
unique factory set FPGA ID hardwired into the device
which can be used to implement designs which only
operate with a particular ID.
Chip IDs generated in this way should be unique and
repeatable. Uniqueness is required to avoid ID collisions
between devices, while repeatability is necessary to
ensure that a given device returns the same value every
time. We use the term unstable to describe a chip ID with
low repeatability.
Ring Oscillators (ROs) are often used to generate PUF
IDs. One common method is to use a cell consisting of
two or more ROs. Due to transistor delay variations, a
random output for cell can be obtained from the
difference in period of ROs with the same layout but
different locations.
By using configurable ring oscillators and a run-time re-
initialization scheme, the near-threshold residue values
are eliminated. After threshold process the resulting IDs

have very good statistical properties over a wide range of
conditions, the reliability of chip ID generation is
significantly improved. A power-up initialization and
dynamic re-initialization process which selects and stores
paths with the largest.

II. BACKGROUND

PUFs have drawn considerable attention from the
hardware security research community since they were
proposed in 2001 [1], [2]. Various PUF implementation
techniques are used. They are given in the following
subsections.

1. PUF on ASICs

It used an array of addressable NMOS transistors loaded
with a common resistive load. Drain current mismatch
caused the voltage across the load to be different for
different transistors in the array. By addressing the
transistors in the array sequentially, a sequence of
voltages was generated and successive values converted
to a binary sequence via an auto-zeroing comparator to
form an ID [3]. An improved circuit which used cross-
coupled logic gates to simultaneously generate amplifies
and digitize transistor mismatch. This circuit was able to
produce a 128-bit, 96% stable ID using only 1.6 pJ/bit [4].
Helinski et al. proposed another PUF design based on
measured equivalent resistance variations in the power
distribution system of an IC [5].

2. PUF on FPGAs

FPGA-based PUF implementations can be categorized
into the following types.

2.1) Memory-Based PUF:

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 5, May-2013 184
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

Guajardo et al. utilized the initialization state of static
RAM cells in an FPGA and showed that they had suitable
statistical properties for producing an ID [6], [7].

2.2) Logic-Based PUF:
The count variation-dependent glitches on the output of a
combinational multiplier to generate unique identification
[8]. Anderson used an FPGA’s carry chain to implement a
PUF [9].

2.3) Arbiter-Based PUF:

Figure. 1 shows an arbiter PUF, comprising two parallel
n-stage multiplexer chains feeding a flip-flop. A transition
is input to the arbiter it travels through a 0 series of 2-
input/2-output switches. Each switch is configured to be
either a cross or a straight connection based on its
selection bit. The arbiter compares the arrival times of its
two inputs and generates a response bit. The path
segments are designed to have the same nominal delays
but their actual delays differ due to process variation.
The difference between the top and bottom path delays on
the segment is denoted by in Figure. 1. The PUF
challenges are the selector bits of the switches. The output
of the arbiter is a function of the challenge bits and
different for different chips.

Fig.1. Arbiter-based PUF.

Suh and Devadas [10] generated binary outputs
from a difference in path pair delays. Majzoobi et al. [11]
proposed an improved arbiter-based PUF which utilized
multiple delay lines for each response bit, transformations
and combinations of the challenge bits and combination
of the outputs from multiple delay lines. This scheme
achieved lower predictability and higher resilience against
circuit faults then reverse engineering and other security
attacks.

2.4) RO-Based PUF:

 A RO-based PUF uses differences in period between
similar ROs. The RO is typically encapsulated in a hard
macro with fixed layout, and arranged in different spatial
locations on the FPGA. Since the logic cells and routing
are identical, the same nominal value of loop delay is
achieved.
Suh and Devadas [10] compared Arbiter and RO based
PUFs and found the latter achieved better performance.
Ring oscillators with vastly different periods were used to
improve the robustness of the generated ID. For each of
pairs, the pair with maximum distance was chosen, and a
bit vector of these selections is saved so that the same
pairs can be used to regenerate the output.

Maiti and Schaumont [12] proposed a configurable ring
oscillator to achieve a higher reliability in an RO-based
PUF. This scheme used in [10], this approach was more
efficient in terms of hardware cost and ROs are required
to generate bits.
Merli et al. [13] showed that RO frequencies strongly
depend on the surrounding logic. Based on these findings,
they proposed a strategy for improving the quality of RO
PUF designs by placing and comparing ROs in a chain
structure.
Morozov et al. [14] argued that symmetry requirements
for Arbiter and Butterfly PUF architectures cannot be
satisfied using available FPGA routing schemes despite
the apparent routing flexibility of FPGA devices, and
suggest that RO-based schemes are preferable.

3. Digital Clock Manager

Digital Clock Manager (DCM) that gives flexible,
complete control over the clock frequency. The DCM is
simulated in VHDL language using Xilinx Project
Navigator software. It does not rely on phase-locked loop
(PLL), delay-locked loop (DLL) or any feedback loop,
but exhibits most of the functionalities of a DCM like
digital frequency synthesis (multiplier/divider), duty-
cycle correction, programmable phase shifter,
programmable duty-cycle synthesizer and coarse phase
shifter.

Figure2: Multiplier/divider module

III. PRINCIPLE OF OPERATION

1. One-Bit Generation

Our proposed bit generation is achieved via a 2X2 RO
array. The four ROs are placed in a common centered
layout, as show in Fig. 3(a). Such an arrangement is
called a “cell” in this work and generates a single bit. We
adopt an overlapped cell composition rather than the
disjoint one used in our previous work.
This serves to improve the resource efficiency of the
design by a factor of four. As an example, to generate a
64-bit ID, the new scheme requires a 9X9 RO array
compared to 16X16, and the randomness of the generated
bits is not compromised.
A timer driven by a 10 MHz system clock, fclk is used to
measure the number of rising edges of the RO, NRO, over
a period of Ntimer cycles. The frequency of ring oscillator
is given by,

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 5, May-2013 185
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

NRO = (fRO/fclk) X Ntimer (1)

 For example, assuming, the value of ranges from 170 to
190 MHz at room temperature. This resulted in an in the
range 34 000 to 38 000.If is positive, the bit generated by
this cell is 0, otherwise, it is 1. We use the term “polarity”
to denote this characteristic.

Fig.3. One-bit ID generation. (a) Block diagram of a cell.
(b) 1-bit ID computation.

2. Sources of Instability

For the static RO design in the values across all cells were
observed to have a Gaussian distribution as shown in
Figure 3. This was confirmed by an Anderson Darling test
[15]. Since the mean is zero, the most frequently
occurring residues are close to this value, making them
likely to become unstable. We propose to replace the
static RO with a configurable RO to amplify the residue.

3. Digital Clock Generation

The complete DCM module is divided into five sub-
modules: digital frequency synthesizer, duty-cycle
corrector, programmable phase shifter, programmable
duty cycle synthesizer and coarse phase shifter. The
digital frequency synthesizer (DFS) performs the function
of clock multiplication/division.
The multiplication of a clock frequency by a
programmable number is often necessary in high-
performance signal synthesizers as well as in FPGAs.
Most of the systems utilize PLL or DLL for clock
multiplication. These systems result in high phase
accuracy with higher programmability but at the expense
of high complexity and high power consumption. The
output clock frequency of the DFS is given by:

fDFS = fclk (multiplier/divider) (2)

The output clock from the DFS is phase symmetric with
50% duty cycle. The duty-cycle correction module
corrects the duty cycle of the input clock to 50%. If the
input clock has 30% duty cycle, the output-clock duty
cycle is corrected to exactly 50% with no change in
frequency. The programmable phase shifter (PPS)

provides the programmable phase shifted versions of the
input clock. It has integer values ranging from –255 to
255 to which phase-shift attribute is assigned. The
programmable duty-cycle synthesizer varies the duty
cycle of the input clock as per the programmable input.
This helps to improve the metastabilty factor due to set-
up/hold time violations.
This module assigns 0 to 100% duty cycle to the output
clock. The coarse phase shifter provides output clocks
that are 90°, 180° and 270° phase-shifted versions of the
in-put clock and require no programmability. The master
clock used to sample the input reference clock has a
frequency of 100MHz and is generated using the ring
oscillator at the gate level with delay elements
implemented as inverting buffer.
Since DLL or PLL is not the basis of this design, the
maximum allowed input reference clock is of 1 MHz. All
the sub-modules of the DCM are more or less based on
the same basic concept. In VHDL description, an inverter
in the ring oscillator is defined as,

Q <= not(A)after invdel (3)

Where ‘invdel’ is estimated delay for the inverter. This
delay is estimated on the basis of the device used for
implementation and the values of delay at the gate and
flip-flop level. As per the delay values provided in the
datasheet of XILINX Spartan-3 FPGA XC3S1500, seven
inverters are placed as delay element. The reset signal is
provided to the ring oscillator as well as to all the
counters and is an active- high signal.

4. Error analysis in DCM

There are mainly two types of errors to be analyzed in this
implementation of the DCM. One of the errors occurs
because the period of the reference clock may not be an
integral multiple of the master clock period. This error
results in jitter. The second error occurs because the
accumulated value ‘K’ in the counter may not be exactly
divisible by any of the divide-by-‘N’ counters. This error
results in phase asymmetry. Both these errors can be
minimized by having master clock at very high frequency
so that the counter counts up to very large values. But
since we cannot employ ring oscillators with very high
frequencies (due to the need for the circuit to process the
OSC signal typically, a few nanoseconds), this limits the
maximum frequency that can be controlled by the DCM.
In this case, based on the current technology of FPGA
used, the output frequency is below 20 MHz.

IV. IMPLEMENTATION

1. Architecture

Figure 4 illustrates the architecture of our chip ID
generator design. It includes a 9 x 9 RO array providing
8x8 cells.
This can generate 64 separate bits. The address generator
together with the two decoders select a single RO to

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 5, May-2013 186
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

operate over a given time interval. A 4-bit global RO
configuration signal, detailed in the next subsection, is
also sent to each RO. At any given time only one RO can
be activated and hence the configuration only affects the
operating RO. Two levels of multiplexors are used to
route the output of the selected RO to the counter.

2. Configurable RO

The circuit implementation of the configurable RO is
shown in Figure 5. In this work, a Xilinx Spartan-3e was
used to demonstrate the technique. The design could be
easily ported to different FPGA families. A four-stage RO
is used where three of the stages are non-inverting and the
final one is inverting. Each occupies two Xilinx logic
elements (LEs) within a slice and a multiplexer is used to
choose the signal path. The entire RO occupies a single
Xilinx configurable logic block (CLB). By selecting
different values of S0 – S3, 16 different configurations
can be chosen. Logic and interconnect delay mismatch in
the paths of the different configurations change the
frequency of the RO.

Fig. 4. Block diagram of chip ID generator architecture.

2. Configurable RO

Fig.5. Circuit for the configurable RO.

The circuit implementation of the configurable RO is
shown in Figure 5. In this work, a Xilinx Spartan-3e was
used to demonstrate the technique. The design could be
easily ported to different FPGA families. A four-stage RO
is used where three of the stages are non-inverting and the
final one is inverting. Each occupies two Xilinx logic
elements (LEs) within a slice and a multiplexer is used to
choose the signal path. The entire RO occupies a single
Xilinx configurable logic block (CLB). By selecting
different values of S0 – S3, 16 different configurations
can be chosen. Logic and interconnect delay mismatch in
the paths of the different configurations change the
frequency of the RO.
Due to these expected systematic variations, generating
using different configurations leads to correlated outputs.
Instead, we use the same configuration for all four ROs in
a cell, and choose the one with the largest. This technique
employs one configurable RO to achieve a similar result
to choosing from 16 normal ROs as done in Suh and
Devadas’s work [10], resulting in a reduction in area.

3. Configuration Initialization

3.1) Power-Up Initialization

Our proposed method requires a set of configurations to
generate stable IDs so a scheme is required to initialize
them upon power-up. One straight forward approach is to
determine configurations when the FPGA is powered up
the first time, and store them in non-volatile memory or
on an authorized server. Such an approach would also
need to carefully consider the possibility of information
leakage and susceptibility to modeling attacks [20].
When the chip is subsequently powered up,
configurations are transferred to the chip for ID
generation. Unfortunately, for this scenario, a
communication channel is required. Even though the
configuration does not reveal relative speeds of the ROs,
it leaks information. For instance, if the same
configuration is used for overlapping cells, an adversary
may be able to infer a dependency between the ROs
involved. Moreover, if an adversary can see both the
configuration and the resulting ID, this provides
additional information to could aid modeling attacks [20].

3.2) Run-Time Re-Initialization

We propose a dynamic re-initialization technique to
further improve reliability. Re-initialization could be

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 5, May-2013 187
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

triggered by periodically measuring the frequency of a
particular RO (or embedded sensor) to track temperature
or voltage variations. It serves to find a configuration with
larger than the previous one while maintaining polarity if
possible. If the current configuration still remains the best
one, no modification is made. Otherwise, a new
configuration is stored.
An RO counter value can be monitored to detect
environmental changes. We studied how the counter value
changes with temperature and supply voltage. This
threshold can be obviously be changed for different
requirements.

4. Flow of Chip ID Generation

After power-up initialization, the overall process of the
proposed chip ID generation can be represented as shown
in Figure 6. It is divided into two phases, generation and
re-initialization. During re-initialization, the
configurations of all cells are swept to determine which
one generates the largest of the same polarity as the
previous best configuration. The information is stored for
chip ID generation.

V. RESULTS

1. Summary of Hardware Resource Consumption

We implemented the system on a custom board
with a Xilinx Spartan-3e FPGA (xc3s250e-4pq208).
Xilinx ISE Design Suite 12.1 and Vision v3.62c are
respectively used for FPGA design.

Figure6. Flowchart showing chip ID generation process.

2. Statistical Analysis

2.1) Cell Configurations:

The distribution of selected configurations over all cells.
Although the distribution is not uniform, strong biases
towards some particular configurations were not evident.
2.2) Hamming Distance:

The Hamming distances between all pairs of chip IDs.
The average value is 30, which is 47% of the bit width.
This is very close to the ideal of 50% for independent IDs.
2.3) Correlation Analysis:

As each is fully correlated with itself, the diagonal values
are equal to 1. On average, the correlation between
different s is and 90% of the correlations are in the range
0.2 to 0.2 with a maximum absolute value of 0.44. From
this analysis we conclude that there was no evident
correlation between bits in the ID generation process.

VI. CONCLUSION

The chip ID generation method using digital clock
module, configurable RO, power-up initialization and
adaptive re-initialization can considerably improve its
repeatability. Results show that a very stable ID
generation can be achieved over a wide range of operating
conditions. Since this design was completely
implemented using standard digital circuits. The DCM is
simulated in VHDL language using XILINX Project
Navigator software.

As future work, develop more parallel generation
schemes to speed up chip ID generation.

REFERENCES

Proceedings Papers:

[1] R. Pappu, “”Physical One-way Functions” Ph.D.

dissertation, Program in Media Arts Sci., Sch.
Arch. Planning, Massachusetts Inst. Technol.,
Cambridge, 2001. [Online]. Available:
http://pubs.media.mit.edu/pubs/papers/01.03.papp
uphd.powf.pdf

[2] R. Pappu, B. Recht, J. Taylor, and N.
Gershenfeld, “Physical one-way functions,”
Science vol. 297, no. 5589, pp. 2026–2030, 2002.
[Online]. Available:
http://www.sciencemag.org/content/297/5589/202
6.abstract

[3] K. Lofstrom, W. R. Daasch, and D. Taylor, “IC
identification circuit using device mismatch,” in
Proc. Int. Solid-State Circuits Conf. (ISSCC),
2000, pp. 372–373.

[4] Y. Su, J. Holleman, and B. Otis, “A digital 1.6
pJ/bit chip identification circuit using process

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 5, May-2013 188
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

variations,” IEEE J. Solid-State Circuits, vol. 43,
no. 1, pp. 69–77, Jan. 2008.

[5] [5] R. Helinski, D. Acharyya, and J. Plusquellic,
“A physical unclonable function defined using
power distribution system equivalent resistance
variations,” in Proc. 46th Annu. Design Autom.
Conf. (DAC), 2009, pp. 676–681.

[6] J. Guajardo, S. S. Kumar, G.-J. Schrijen, and P.
Tuyls, “FPGA intrinsic PUFs and their use for IP
protection,” in Proc. 9th Int. Workshop
Cryptograph. Hardw. Embed. Syst. (CHES) ,
2007, pp. 63–80.

[7] J. Guajardo, S.Kumar,G.-J. Schrijen, and P. Tuyls,
“Physical unclonable functions and public-key
crypto for FPGA IP protection,” in Proc. Int.
Conf. Field Program. Logic Appl. (FPL), 2007,
pp. 189–195.

[8] H. Patel, Y. Kim, J. McDonald, and L. Starman,
“Increasing stability and distinguishability of the
digital fingerprint in FPGAs through input word
analysis,” in Proc. Int. Conf. Field Program. Logic
Appl. (FPL), 2009, pp. 391–396.

[9] J. Anderson, “A PUF design for secure FPGA-
based embedded systems,” in Proc. 15th Asia
South Pacific Design Autom. Conf. (ASPDAC) ,
2010, pp. 1–6.

[10] G. E. Suh and S. Devadas, “Physical unclonable
functions for device authentication and secret key
generation,” in Proc. 44th Annu. Design Autom.
Conf. (DAC), 2007, pp. 9–14.

[11] M. Majzoobi, F. Koushanfar, and M. Potkonjak,
“Lightweight secure PUFs,” in Proc. IEEE/ACM
Int. Conf. Comput.-Aided Design, 2008, pp. 670–
673.

[12] A. Maiti and P. Schaumon “Improving the quality
of a physical unclonable function using
configurable ring oscillators,” in Proc. Int. Conf.
Field Program. Logic Appl. (FPL), 2009, pp. 703–
707.

[13] D. Merli, F. Stumpf, and C. Eckert “Improving
the quality of ring oscillator PUFs on FPGAs” in
Proc. 5thWorkshop Embed. Syst. Security, 2010,
pp. 9:1–9:9.

[14] S. Morozov, A. Maiti and P. Schaumont “An
analysis of delay based PUF implementations on
FPGA” in Reconfigurable Computing:
Architectures Tools and Applications, P. Sirisuk,
F. Morgan, T. El-Ghazawi and H. Amano, Eds.
Berlin, Germany: Springer, 2010, vol. 5992, pp.
382–387, Lecture Notes in Computer Science.

[15] T. W. Anderson and D. A. Darling “Asymptotic
theory of certain goodness of fit criteria based on
stochastic processes,” Annu. Math. Statist., vol.
23, pp. 193–212, 1952.

IJSER

http://www.ijser.org/

	Fpga Chip Identificaton Generator Using Digital Clock Manager
	*(M.E – VLSI Design, Srinivasan Engineering College, Perambalur,
	I. INTRODUCTION
	II. BACKGROUND
	1. PUF on ASICs
	2. PUF on FPGAs
	III. PRINCIPLE OF OPERATION
	1. One-Bit Generation
	IV. IMPLEMENTATION
	1. Architecture
	2. Configurable RO
	2. Configurable RO
	Fig.5. Circuit for the configurable RO.
	3. Configuration Initialization
	4. Flow of Chip ID Generation
	V. RESULTS
	Figure6. Flowchart showing chip ID generation process.
	2. Statistical Analysis
	VI. CONCLUSION
	REFERENCES

