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ABSTRACT 
 
Physically Unclonable Functions (PUF) are commonly used in applications such as hardware security and property 
protection. Various PUF implementation techniques are used to translate the chip-specific variations into a unique 
binary string. It is difficult to maintain the repeatability of FPGA chip ID generation, especially used over a wide 
range of operating conditions. To overcome this problem, configurable ring oscillator, orthogonal re-initialization 
scheme to improve repeatability. We propose a Digital Clock Manager (DCM). It is used to generate the digital 
clock signals. 
Keywords - Field-Programmable Gate Array (FPGA), physically unclonable functions, digital clock manager, 
configurable ring oscillator. 
 
I. INTRODUCTION  
 
Field-Programmable Gate Arrays (FPGAs) are a 
mainstream of hardware implementation platform, and 
need to be equipped with chip identification capabilities.  
Today’s FPGAs already contain such features. For 
example, in Xilinx Vertex devices, a bit-stream can be 
encrypted using a secret key. 
When the bit-stream is downloaded, a hardware 
decryption core decrypts the bit-stream. The bit-stream 
only operates correctly if the device was programmed 
with the same key. This key is stored in RAM and it is not 
possible to read back the value [1]. Unfortunately, the 
chip Identifier (ID) used for bit-stream decoding is not 
available for other applications since this value cannot be 
read.  
Xilinx also provides “Device DNA” in Spartan-3A series 
FPGAs to protect designs from cloning, unauthorized 
overbuilding and reverse engineering. This feature is a 
unique factory set FPGA ID hardwired into the device 
which can be used to implement designs which only 
operate with a particular ID.  
Chip IDs generated in this way should be unique and 
repeatable. Uniqueness is required to avoid ID collisions 
between devices, while repeatability is necessary to 
ensure that a given device returns the same value every 
time. We use the term unstable to describe a chip ID with 
low repeatability.  
Ring Oscillators (ROs) are often used to generate PUF 
IDs. One common method is to use a cell consisting of 
two or more ROs. Due to transistor delay variations, a 
random output for cell can be obtained from the 
difference in period of ROs with the same layout but 
different locations. 
By using configurable ring oscillators and a run-time re-
initialization scheme, the near-threshold residue values 
are eliminated. After threshold process the resulting IDs 

have very good statistical properties over a wide range of 
conditions, the reliability of chip ID generation is 
significantly improved. A power-up initialization and 
dynamic re-initialization process which selects and stores 
paths with the largest.  

 
II. BACKGROUND 
 
PUFs have drawn considerable attention from the 
hardware security research community since they were 
proposed in 2001 [1], [2]. Various PUF implementation 
techniques are used. They are given in the following 
subsections. 

 
1. PUF on ASICs 
 
It used an array of addressable NMOS transistors loaded 
with a common resistive load. Drain current mismatch 
caused the voltage across the load to be different for 
different transistors in the array. By addressing the 
transistors in the array sequentially, a sequence of 
voltages was generated and successive values converted 
to a binary sequence via an auto-zeroing comparator to 
form an ID [3]. An improved circuit which used cross-
coupled logic gates to simultaneously generate amplifies 
and digitize transistor mismatch. This circuit was able to 
produce a 128-bit, 96% stable ID using only 1.6 pJ/bit [4]. 
Helinski et al. proposed another PUF design based on 
measured equivalent resistance variations in the power 
distribution system of an IC [5]. 

 
2. PUF on FPGAs 
 
FPGA-based PUF implementations can be categorized 
into the following types. 
 
2.1) Memory-Based PUF:  
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Guajardo et al. utilized the initialization state of static 
RAM cells in an FPGA and showed that they had suitable 
statistical properties for producing an ID [6], [7].  
 
2.2) Logic-Based PUF:  
The count variation-dependent glitches on the output of a 
combinational multiplier to generate unique identification 
[8]. Anderson used an FPGA’s carry chain to implement a 
PUF [9]. 
 
2.3) Arbiter-Based PUF:  
 
Figure. 1 shows an arbiter PUF, comprising two parallel 
n-stage multiplexer chains feeding a flip-flop. A transition 
is input to the arbiter it travels through a 0 series of 2-
input/2-output switches. Each switch is configured to be 
either a cross or a straight connection based on its 
selection bit. The arbiter compares the arrival times of its 
two inputs and generates a response bit. The path 
segments are designed to have the same nominal delays 
but their actual delays differ due to process variation.  
The difference between the top and bottom path delays on 
the segment is denoted by in Figure. 1. The PUF 
challenges are the selector bits of the switches. The output 
of the arbiter is a function of the challenge bits and 
different for different chips. 

 
 

 
Fig.1. Arbiter-based PUF. 
 

Suh and Devadas [10] generated binary outputs 
from a difference in path pair delays. Majzoobi et al. [11] 
proposed an improved arbiter-based PUF which utilized 
multiple delay lines for each response bit, transformations 
and combinations of the challenge bits and combination 
of the outputs from multiple delay lines. This scheme 
achieved lower predictability and higher resilience against 
circuit faults then reverse engineering and other security 
attacks. 

 
2.4) RO-Based PUF: 
 
 A RO-based PUF uses differences in period between 
similar ROs. The RO is typically encapsulated in a hard 
macro with fixed layout, and arranged in different spatial 
locations on the FPGA. Since the logic cells and routing 
are identical, the same nominal value of loop delay is 
achieved. 
Suh and Devadas [10] compared Arbiter and RO based 
PUFs and found the latter achieved better performance. 
Ring oscillators with vastly different periods were used to 
improve the robustness of the generated ID. For each of 
pairs, the pair with maximum distance was chosen, and a 
bit vector of these selections is saved so that the same 
pairs can be used to regenerate the output.  

Maiti and Schaumont [12] proposed a configurable ring 
oscillator to achieve a higher reliability in an RO-based 
PUF. This scheme used in [10], this approach was more 
efficient in terms of hardware cost and ROs are required 
to generate bits. 
Merli et al. [13] showed that RO frequencies strongly 
depend on the surrounding logic. Based on these findings, 
they proposed a strategy for improving the quality of RO 
PUF designs by placing and comparing ROs in a chain 
structure.  
Morozov et al. [14] argued that symmetry requirements 
for Arbiter and Butterfly PUF architectures cannot be 
satisfied using available FPGA routing schemes despite 
the apparent routing flexibility of FPGA devices, and 
suggest that RO-based schemes are preferable. 
 
3. Digital Clock Manager 
 
Digital Clock Manager (DCM) that gives flexible, 
complete control over the clock frequency. The DCM is 
simulated in VHDL language using Xilinx Project 
Navigator software. It does not rely on phase-locked loop 
(PLL), delay-locked loop (DLL) or any feedback loop, 
but exhibits most of the functionalities of a DCM like 
digital frequency synthesis (multiplier/divider), duty-
cycle correction, programmable phase shifter, 
programmable duty-cycle synthesizer and coarse phase 
shifter.  

 
 

Figure2: Multiplier/divider module 
 

III. PRINCIPLE OF OPERATION 
 
1. One-Bit Generation 
 
Our proposed bit generation is achieved via a 2X2 RO 
array. The four ROs are placed in a common centered 
layout, as show in Fig. 3(a). Such an arrangement is 
called a “cell” in this work and generates a single bit. We 
adopt an overlapped cell composition rather than the 
disjoint one used in our previous work.  
This serves to improve the resource efficiency of the 
design by a factor of four. As an example, to generate a 
64-bit ID, the new scheme requires a 9X9 RO array 
compared to 16X16, and the randomness of the generated 
bits is not compromised. 
A timer driven by a 10 MHz system clock, fclk is used to 
measure the number of rising edges of the RO, NRO, over 
a period of Ntimer cycles. The frequency of ring oscillator 
is given by, 
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NRO = (fRO/fclk) X Ntimer    (1) 

 
 For example, assuming, the value of ranges from 170 to 
190 MHz at room temperature. This resulted in an in the 
range 34 000 to 38 000.If is positive, the bit generated by 
this cell is 0, otherwise, it is 1. We use the term “polarity” 
to denote this characteristic.  

 
 

Fig.3. One-bit ID generation. (a) Block diagram of a cell. 
(b) 1-bit ID computation. 
 
2. Sources of Instability 
 
For the static RO design in the values across all cells were 
observed to have a Gaussian distribution as shown in 
Figure 3. This was confirmed by an Anderson Darling test 
[15]. Since the mean is zero, the most frequently 
occurring residues are close to this value, making them 
likely to become unstable. We propose to replace the 
static RO with a configurable RO to amplify the residue. 
 
3. Digital Clock Generation 
 
The complete DCM module is divided into five sub-
modules: digital frequency synthesizer, duty-cycle 
corrector, programmable phase shifter, programmable 
duty cycle synthesizer and coarse phase shifter. The 
digital frequency synthesizer (DFS) performs the function 
of clock multiplication/division.  
The multiplication of a clock frequency by a 
programmable number is often necessary in high-
performance signal synthesizers as well as in FPGAs. 
Most of the systems utilize PLL or DLL for clock 
multiplication. These systems result in high phase 
accuracy with higher programmability but at the expense 
of high complexity and high power consumption. The 
output clock frequency of the DFS is given by: 
 
fDFS = fclk (multiplier/divider)   (2) 

 
The output clock from the DFS is phase symmetric with 
50% duty cycle. The duty-cycle correction module 
corrects the duty cycle of the input clock to 50%. If the 
input clock has 30% duty cycle, the output-clock duty 
cycle is corrected to exactly 50% with no change in 
frequency. The programmable phase shifter (PPS) 

provides the programmable phase shifted versions of the 
input clock. It has integer values ranging from –255 to 
255 to which phase-shift attribute is assigned. The 
programmable duty-cycle synthesizer varies the duty 
cycle of the input clock as per the programmable input. 
This helps to improve the metastabilty factor due to set-
up/hold time violations.  
This module assigns 0 to 100% duty cycle to the output 
clock. The coarse phase shifter provides output clocks 
that are 90°, 180° and 270° phase-shifted versions of the 
in-put clock and require no programmability. The master 
clock used to sample the input reference clock has a 
frequency of 100MHz and is generated using the ring 
oscillator at the gate level with delay elements 
implemented as inverting buffer. 
Since DLL or PLL is not the basis of this design, the 
maximum allowed input reference clock is of 1 MHz. All 
the sub-modules of the DCM are more or less based on 
the same basic concept. In VHDL description, an inverter 
in the ring oscillator is defined as, 

 
Q <= not(A)after invdel   (3) 

 
Where ‘invdel’ is estimated delay for the inverter. This 
delay is estimated on the basis of the device used for 
implementation and the values of delay at the gate and 
flip-flop level. As per the delay values provided in the 
datasheet of XILINX Spartan-3 FPGA XC3S1500, seven 
inverters are placed as delay element. The reset signal is 
provided to the ring oscillator as well as to all the 
counters and is an active- high signal.  

 
 

4. Error analysis in DCM  
 
There are mainly two types of errors to be analyzed in this 
implementation of the DCM. One of the errors occurs 
because the period of the reference clock may not be an 
integral multiple of the master clock period. This error 
results in jitter. The second error occurs because the 
accumulated value ‘K’ in the counter may not be exactly 
divisible by any of the divide-by-‘N’ counters. This error 
results in phase asymmetry. Both these errors can be 
minimized by having master clock at very high frequency 
so that the counter counts up to very large values. But 
since we cannot employ ring oscillators with very high 
frequencies (due to the need for the circuit to process the 
OSC signal typically, a few nanoseconds), this limits the 
maximum frequency that can be controlled by the DCM. 
In this case, based on the current technology of FPGA 
used, the output frequency is below 20 MHz.  

 
IV. IMPLEMENTATION 
 
1. Architecture 
 
Figure 4 illustrates the architecture of our chip ID 
generator design. It includes a 9 x 9 RO array providing 
8x8 cells.  
This can generate 64 separate bits. The address generator 
together with the two decoders select a single RO to 
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operate over a given time interval. A 4-bit global RO 
configuration signal, detailed in the next subsection, is 
also sent to each RO. At any given time only one RO can 
be activated and hence the configuration only affects the 
operating RO. Two levels of multiplexors are used to 
route the output of the selected RO to the counter.  

 
2. Configurable RO 
 
The circuit implementation of the configurable RO is 
shown in Figure 5. In this work, a Xilinx Spartan-3e was 
used to demonstrate the technique. The design could be 
easily ported to different FPGA families. A four-stage RO 
is used where three of the stages are non-inverting and the 
final one is inverting. Each occupies two Xilinx logic 
elements (LEs) within a slice and a multiplexer is used to 
choose the signal path. The entire RO occupies a single 
Xilinx configurable logic block (CLB). By selecting 
different values of S0 – S3, 16 different configurations 
can be chosen. Logic and interconnect delay mismatch in 
the paths of the different configurations change the 
frequency of the RO. 

 

  
Fig. 4. Block diagram of chip ID generator architecture. 
 
2. Configurable RO 
 

 
 
Fig.5. Circuit for the configurable RO. 
 
The circuit implementation of the configurable RO is 
shown in Figure 5. In this work, a Xilinx Spartan-3e was 
used to demonstrate the technique. The design could be 
easily ported to different FPGA families. A four-stage RO 
is used where three of the stages are non-inverting and the 
final one is inverting. Each occupies two Xilinx logic 
elements (LEs) within a slice and a multiplexer is used to 
choose the signal path. The entire RO occupies a single 
Xilinx configurable logic block (CLB). By selecting 
different values of S0 – S3, 16 different configurations 
can be chosen. Logic and interconnect delay mismatch in 
the paths of the different configurations change the 
frequency of the RO. 
Due to these expected systematic variations, generating 
using different configurations leads to correlated outputs. 
Instead, we use the same configuration for all four ROs in 
a cell, and choose the one with the largest. This technique 
employs one configurable RO to achieve a similar result 
to choosing from 16 normal ROs as done in Suh and 
Devadas’s work [10], resulting in a reduction in area. 

 
3. Configuration Initialization 
 
3.1) Power-Up Initialization 
 
Our proposed method requires a set of configurations to 
generate stable IDs so a scheme is required to initialize 
them upon power-up. One straight forward approach is to 
determine configurations when the FPGA is powered up 
the first time, and store them in non-volatile memory or 
on an authorized server. Such an approach would also 
need to carefully consider the possibility of information 
leakage and susceptibility to modeling attacks [20].  
When the chip is subsequently powered up, 
configurations are transferred to the chip for ID 
generation. Unfortunately, for this scenario, a 
communication channel is required. Even though the 
configuration does not reveal relative speeds of the ROs, 
it leaks information. For instance, if the same 
configuration is used for overlapping cells, an adversary 
may be able to infer a dependency between the ROs 
involved. Moreover, if an adversary can see both the 
configuration and the resulting ID, this provides 
additional information to could aid modeling attacks [20].  
 
3.2) Run-Time Re-Initialization 
 
We propose a dynamic re-initialization technique to 
further improve reliability. Re-initialization could be 
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triggered by periodically measuring the frequency of a 
particular RO (or embedded sensor) to track temperature 
or voltage variations. It serves to find a configuration with 
larger than the previous one while maintaining polarity if 
possible. If the current configuration still remains the best 
one, no modification is made. Otherwise, a new 
configuration is stored.  
An RO counter value can be monitored to detect 
environmental changes. We studied how the counter value 
changes with temperature and supply voltage. This 
threshold can be obviously be changed for different 
requirements. 

 
4. Flow of Chip ID Generation 

 
After power-up initialization, the overall process of the 
proposed chip ID generation can be represented as shown 
in Figure 6. It is divided into two phases, generation and 
re-initialization. During re-initialization, the 
configurations of all cells are swept to determine which 
one generates the largest of the same polarity as the 
previous best configuration. The information is stored for 
chip ID generation.  
 
V. RESULTS 
 
1. Summary of Hardware Resource Consumption 
 

We implemented the system on a custom board 
with a Xilinx Spartan-3e FPGA (xc3s250e-4pq208). 
Xilinx ISE Design Suite 12.1 and Vision v3.62c are 
respectively used for FPGA design. 
 

 
 
Figure6. Flowchart showing chip ID generation process. 

 

2. Statistical Analysis 
 

2.1) Cell Configurations: 
  
The distribution of selected configurations over all cells. 
Although the distribution is not uniform, strong biases 
towards some particular configurations were not evident. 
2.2) Hamming Distance:  
 
The Hamming distances between all pairs of chip IDs. 
The average value is 30, which is 47% of the bit width. 
This is very close to the ideal of 50% for independent IDs.  
2.3) Correlation Analysis:  
 
As each is fully correlated with itself, the diagonal values 
are equal to 1. On average, the correlation between 
different s is and 90% of the correlations are in the range 
0.2 to 0.2 with a maximum absolute value of 0.44. From 
this analysis we conclude that there was no evident 
correlation between bits in the ID generation process. 
 
 
VI. CONCLUSION 
 
The chip ID generation method using digital clock 
module, configurable RO, power-up initialization and 
adaptive re-initialization can considerably improve its 
repeatability. Results show that a very stable ID 
generation can be achieved over a wide range of operating 
conditions. Since this design was completely 
implemented using standard digital circuits. The DCM is 
simulated in VHDL language using XILINX Project 
Navigator software. 

As future work, develop more parallel generation 
schemes to speed up chip ID generation. 
 
REFERENCES 
 
Proceedings Papers: 

 
[1] R. Pappu, “”Physical One-way Functions” Ph.D. 

dissertation, Program in Media Arts Sci., Sch. 
Arch. Planning, Massachusetts Inst. Technol., 
Cambridge, 2001. [Online]. Available: 
http://pubs.media.mit.edu/pubs/papers/01.03.papp
uphd.powf.pdf 

[2] R. Pappu, B. Recht, J. Taylor, and N. 
Gershenfeld, “Physical one-way functions,” 
Science vol. 297, no. 5589, pp. 2026–2030, 2002. 
[Online]. Available: 
http://www.sciencemag.org/content/297/5589/202
6.abstract 

[3] K. Lofstrom, W. R. Daasch, and D. Taylor, “IC 
identification circuit using device mismatch,” in 
Proc. Int. Solid-State Circuits Conf. (ISSCC), 
2000, pp. 372–373. 

[4] Y. Su, J. Holleman, and B. Otis, “A digital 1.6 
pJ/bit chip identification circuit using process 

IJSER

http://www.ijser.org/


International Journal of Scientific & Engineering Research, Volume 4, Issue 5, May-2013                                                                188 
ISSN 2229-5518 
 

IJSER © 2013 
http://www.ijser.org 

variations,” IEEE J. Solid-State Circuits, vol. 43, 
no. 1, pp. 69–77, Jan. 2008. 

[5] [5] R. Helinski, D. Acharyya, and J. Plusquellic, 
“A physical unclonable function defined using 
power distribution system equivalent resistance 
variations,” in Proc. 46th Annu. Design Autom. 
Conf. (DAC), 2009, pp. 676–681. 

[6] J. Guajardo, S. S. Kumar, G.-J. Schrijen, and P. 
Tuyls, “FPGA intrinsic PUFs and their use for IP 
protection,” in Proc. 9th Int. Workshop 
Cryptograph. Hardw. Embed. Syst. (CHES) , 
2007, pp. 63–80. 

[7] J. Guajardo, S.Kumar,G.-J. Schrijen, and P. Tuyls, 
“Physical unclonable functions and public-key 
crypto for FPGA IP protection,” in Proc. Int. 
Conf. Field Program. Logic Appl. (FPL), 2007, 
pp. 189–195. 

[8] H. Patel, Y. Kim, J. McDonald, and L. Starman, 
“Increasing stability and distinguishability of the 
digital fingerprint in FPGAs through input word 
analysis,” in Proc. Int. Conf. Field Program. Logic 
Appl. (FPL), 2009, pp. 391–396. 

[9] J. Anderson, “A PUF design for secure FPGA-
based embedded systems,” in Proc. 15th Asia 
South Pacific Design Autom. Conf. (ASPDAC) , 
2010, pp. 1–6. 

[10] G. E. Suh and S. Devadas, “Physical unclonable 
functions for device authentication and secret key 
generation,” in Proc. 44th Annu. Design Autom. 
Conf. (DAC), 2007, pp. 9–14. 

[11] M. Majzoobi, F. Koushanfar, and M. Potkonjak, 
“Lightweight secure PUFs,” in Proc. IEEE/ACM 
Int. Conf. Comput.-Aided Design, 2008, pp. 670–
673.  

[12] A. Maiti and P. Schaumon “Improving the quality 
of a physical unclonable function using 
configurable ring oscillators,” in Proc. Int. Conf. 
Field Program. Logic Appl. (FPL), 2009, pp. 703–
707. 

[13] D. Merli, F. Stumpf, and C. Eckert “Improving 
the quality of ring oscillator PUFs on FPGAs” in 
Proc. 5thWorkshop Embed. Syst. Security, 2010, 
pp. 9:1–9:9. 

[14] S. Morozov, A. Maiti and P. Schaumont “An 
analysis of delay based PUF implementations on 
FPGA” in Reconfigurable Computing: 
Architectures Tools and Applications, P. Sirisuk, 
F. Morgan, T. El-Ghazawi and H. Amano, Eds. 
Berlin, Germany: Springer, 2010, vol. 5992, pp. 
382–387, Lecture Notes in Computer Science.  

[15] T. W. Anderson and D. A. Darling “Asymptotic 
theory of certain goodness of fit criteria based on 
stochastic processes,” Annu. Math. Statist., vol. 
23, pp. 193–212, 1952. 

IJSER

http://www.ijser.org/

	Fpga Chip Identificaton Generator Using Digital Clock Manager
	*( M.E – VLSI Design, Srinivasan Engineering College, Perambalur,
	I. INTRODUCTION
	II. BACKGROUND
	1. PUF on ASICs
	2. PUF on FPGAs
	III. PRINCIPLE OF OPERATION
	1. One-Bit Generation
	IV. IMPLEMENTATION
	1. Architecture
	2. Configurable RO
	2. Configurable RO
	Fig.5. Circuit for the configurable RO.
	3. Configuration Initialization
	4. Flow of Chip ID Generation
	V. RESULTS
	Figure6. Flowchart showing chip ID generation process.
	2. Statistical Analysis
	VI. CONCLUSION
	REFERENCES



